Wind Technology: New Developments and Markets

Harvesting Clean Energy Conference January 29-30, 2001 Spokane, Washington

Brian Parsons
Project Manager, Wind Applications
National Renewable Energy Laboratory

email: brian_parsons@nrel.gov (303) 384-6958

Sizes and Applications

Small (≤10 kW)
Homes
Farms
Remote Applications
(e.g. water
pumping, telecom
sites, icemaking)

Intermediate (10-250 kW) Village Power Hybrid Systems Distributed Power

Large (250 kW – 2+ MW)
Central Station Wind Farms
Distributed Power

A MATURING WIND TECHNOLOGY

- Technology has matured over 25 years of learning experiences
- Availabilities reported of 98-99%
- Certification to international standards helps to avoid "show stoppers"
- Performance and cost have dramatically improved
 - hardware issues are being promptly addressed
- New hardware is being developed on multiple fronts:
 - higher productivity and lower costs
 - larger sized for both land and offshore installations
 - tailored designs for high capacity factor, low wind speed and extreme weather conditions

A STRONG U.S. MARKET IS EVOLVING

- Currently 2,500 MW installed, expect nearly 4,500 MW by the end of 2001
- Most current successful markets take advantage of Federal and State incentives, as well as customer preference for green energy
- Policies will continue to have a major influence on markets until wind energy costs drop
- The Wind Powering America program is stimulating further market interest, and participation of Federal loads
- Future markets will include both large wind farms and smaller, distributed installations

THE WIND INDUSTRY

- <u>Major Established International Players</u>
 - Turbine & Component Manufacturers
 - Project Developers, Financial Institutions
 - Project Owners & Operators
- Manufacturing Capability is keeping up with market growth of 30% per year
- Manufacturers are offering <u>warranties</u> on performance
- <u>25 years of experience</u> has led to over 1 Billion operating hours world-wide
- New Players are entering the market to meet projected demand growth

United States Wind Power Capacity (MW)

U.S. Wind Power - Expected by end of 2001 (MW)

Taking Off Worldwide

Economic Development Opportunities

- Land Lease Payments: 2-3% of gross revenue \$2500-4000/MW/year
- Local property tax revenue: 100 MW brings in on the order of \$1 million/yr
- 1-2 jobs/MW during construction
- 2-5 permanent O&M jobs per 50-100 MW,
- Local construction and service industry: concrete, towers usually done locally
- Investment as Equity Owners: production tax credit, accelerated depreciation
- Manufacturing and Assembly plants expanding in U.S. (Micon in IL, LM Glasfiber in ND)

Why is Wind different?

• Intermittent

- firm/non-firm rates (low capacity factor)
- scheduling penalties
- reliability contribution
- ancillary services

- little excess capacity
- constrained flow to major load centers

New

- not part of established processes
- expansion and upgrades have been few due to uncertain cost recovery and NIMBY

But... It really depends

Location, Location

Resource

- 1 mph in average speed is ~ 0.5 cents/kWh
- Raising tower from 50 to 100m increases kWh ~15% or more in class 4-5
- Coincidence of wind with load increases value

Permitting

- private vs. public land
- state and local regulations

• Existing site expansion

- quick, low cost option
- What is included
 - transmission, land

Finances and Incentives

- Production Tax Credit
 - 1.7 cents/kWh (escalating) for 10 years equates to around 1.1 cents/kWh reduction in contract price
 - deadline pressure *increases* costs
- State and Local tax, etc. can be significant
 - +/- 0.5 cents/kWh impact
- Public Power (100% debt at tax free rates) 60% of GenCo or IPP cents/kWh
- Renewable Energy Production Incentive annual appropriations problem leads to little impact

Plant and Turbine Size

- Spread "nearly fixed" costs: permitting, crane, legal and other soft costs
- Volume discount from manufacturer
- Economies of scale may bring O&M to under 0.2 cents/kWh
- Next generation of 1.2-2.0
 MW machines are 10-15%
 cheaper/kW

Wind Energy Value

- Emissions free power beginning to have additional value
 - green markets
 - emissions credits
- Reliability/capacity value
- Fuel/Resource diversity and risk

- Intermittency
 - non-dispatchable (different types of kWh)
 - ancillary service costs ??

Cost Conclusions

- The wind industry is delivering ~ 3 cent/kWh contracts, including PTC for large projects
- This price will likely be higher for small projects in new locations
- •Value side important: but cost dominates in domestic markets today

Green Tags - Benefits

To Customer

- Lower cost option
- Opportunity to buy green power if regulated market and no green pricing program offered by utility provider
- Able to aggregate facilities across utility service territories/states/country
- Option for leased facilities that don't pay utility bill
- Requires less staff time

To Supplier

- Contract with green power retail energy supplier not required for renewable developer
 - Simply sell electrons into grid as generic electricity
 - Transmission contract from renewable site to end-use customer not required
- Increased siting flexibility

Federal Goals

Government Facilities

- DOE 3% RE by 2005; 7 1/2% by 2010
- WPA Federal aggregation-100 MW by 2001
- FedREWG 2 1/2% RE by 2005 (pending)

Wind Powering America

- •5% of the nation's electricity with wind by 2020
- •Double the number of states with > 20 MW of wind capacity to 16 by 2005, and triple to 24 by 2010

Land Owners, Communities, Economic Development and Local Government Officials

Messages

 Wind as a new "crop" for local income and economic development

Actions

- formulate facilitating wind-rights and ownership structures (like wind coops)
- develop zoning and permitting procedures that recognize wind development characteristics and needs
- develop streamlined project-approval processes

Regulators, Government Officials and other Policy Makers

Messages

- acceptable economic returns and policies that recognize site/time specific value (not just avoided cost) are needed
- Interconnection requirements based on reasonable safety and operational considerations need to be standardized

Actions

- promote standards development,
 minimize individual or special studies
- support publicly funded infrastructure
- support new valuation methods

Financial Community

Messages

 Financing institutions in Europe provide financing with procedures and terms like standard farm equipment.

Actions

- Evaluate risk levels appropriate for distributed project financing.
- Develop standard financing processes and products to minimize transaction costs.
- Work to develop power-purchase mechanisms and project ownership structures that reduce risk of project investment.

Wind Farm Issues

- Policy
- Siting
- Standards
- Transmission
- Hardware
- Intermittency

Wind Farm Issues

Policy

- Parity with other energy sources
- Encourage economic development and use of local resources
- energy diversity
- no fuel price risk
- hidden subsidies for conventional power
- facilitate "green"markets

Mechanisms

- Restructuring:Portfolio standards,System benefits funds
- Standard purchase tariffs
- Taxes: sales, income,property
- Bidding Evaluations:
 full competitive,
 account for more than
 short-term costs

Siting

- Avian and other wildlife
- Noise
- Visual
- Land Ownership

Standards

- Hardware certification
- Interconnection
 - transmission
 - distribution

Transmission

- Grid Access
- System studies
- Allocation of available capacity
- Scheduling and costs for usage
 - firm
 - non-firm

Hardware

- Lightening
- Extreme Winds
- Corrosion
- Extreme temperatures

Intermittency

- Capacity Factor (energy)
- Capacity Credit/Reliability
 - time match with load
 - probabilistic (like forced outage with conventional power)
- Operational Impacts (ancillary services)
 - voltage/VAR control, load following, etc.

10-20% of system capacity is reasonable without impacts

THE EVOLUTION OF COMMERCIAL U.S. WIND TECHNOLOGY

